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Analysis of the sensitivity properties of
a model of vector-borne bubonic plague

Megan Buzby1, David Neckels2, Michael F. Antolin3 and Donald Estep1,4,*
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Model sensitivity is a key to evaluation of mathematical models in ecology and evolution,
especially in complex models with numerous parameters. In this paper, we use some recently
developed methods for sensitivity analysis to study the parameter sensitivity of a model of
vector-borne bubonic plague in a rodent population proposed by Keeling &Gilligan. The new
sensitivity tools are based on a variational analysis involving the adjoint equation. The new
approach provides a relatively inexpensive way to obtain derivative information about model
output with respect to parameters. We use this approach to determine the sensitivity of a
quantity of interest (the force of infection from rats and their fleas to humans) to various
model parameters, determine a region over which linearization at a specific parameter
reference point is valid, develop a global picture of the output surface, and search for maxima
and minima in a given region in the parameter space.

Keywords: vector-borne disease; model sensitivity analysis; variational analysis
1. INTRODUCTION

Keeling & Gilligan (2000) analysed a deterministic
model of vector-borne bubonic plague en route to
developing a stochastic metapopulation model. The
goal is to use the disease and population dynamics of
rats and fleas to explain how sporadic epidemics can
occur in human populations. The behaviour and sensi-
tivity of the deterministic model with respect to its
parameters constitute an important part of Keeling &
Gilligan’s considerations. Their sensitivity analysis is
essentially based on the properties of the linearization of
the model at a single reference value for the parameters,
which is claimed to represent the behaviour of the model
over a large region in parameter space. We explore the
underlying basis for the Keeling & Gilligan analysis
and the consequences of their conclusions.

Adjoint-based analysis (Lanczos 1996; Marchuk et al.
1996) is a classic way to obtain derivatives of a quantity
of interest computed from the solution of a differential
equation with respect to parameters in the model. In
recent work (Estep & Neckels 2006, 2007), we used the
derivative information obtained from the adjoint
problem to develop computationally efficient sensitivity
analysis tools. In this paper, we apply adjoint-based
analysis and the sensitivity analysis tools from Estep &
Neckels (2006, 2007) to Keeling & Gilligan’s model. We
determine the sensitivity of a specific quantity of
interest to model parameters, determine a region over
address for correspondence: Department of Mathematics,
f Statistics, Colorado State University, Fort Collins, CO
step@math.colostate.edu).
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which linearization at a given parameter value is valid,
develop a global picture of the output surface and search
for maxima and minima in the quantity of interest in a
given region in the parameter space.
1.1. A model of plague

We consider the Keeling & Gilligan (2000) SIRNF
model that describes the dynamics of outbreaks of
plague caused by the bacterium Yersinia pestis in
populations of rats and humans. We follow their
description rather closely. They begin with an SIR
model for the rat population that gives the changes in
the number of susceptible (SR), infectious (IR) and
resistant (RR) rats
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where $ denotes the time derivative and TRZSRCIRC
RR is the total size of the rat population. The net
reproduction rate of susceptible and infected rats is
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Table 1. Reference values for the parameters, derived from
experiments or field observations or otherwise set within
biologically realistic bounds.

parameter significance value

m1Zr �R net rat reproductive rate 5 yrK1

m2Zp� proportion of offspring that
inherit the disease

0.975

m3ZKR rat carrying capacity 2500 kmK2

m4Zd �
R natural rat death rate 0.2 yrK1

m5Zb�R transmission rate to rats from
fleas

4.7 yrK1

m6ZmR rate that rats leave the infected
class

20 yrK1

m7Zg�R fraction of rats that become
resistant

0.02

m8Za searching efficiency of fleas 4!10K3

m9ZrF net flea reproductive rate 20 yrK1

m10Zd �
F natural flea death rates 10 yrK1

m11ZK�
F flea carrying capacity 6.57
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given by rR with carrying capacity KR. The proportion
of offspring that inherit resistance to the disease from
their parents is given by p. The natural death rate of all
rats is dR. The number of free infected fleas looking for a
host is F. The infection term, (1Kexp (aTR)), corre-
sponds to infected fleas randomly searching for a new rat
host for some given time period (Nicholson & Bailey
1935). If they find a host and it is susceptible, then
the rat becomes infected with a given probability. Thus,
bR is the transmission rate from fleas to rats and a
is a measure of the searching efficiency of the fleas.
Rats leave the infected class at a rate of mR and a
fraction gR of these survive to become resistant; the
remainder die and release their infected fleas back into
the environment.

The flea population dynamics are modelled by the
flea index N, which is the average number of fleas living
on a rat (each rat is assumed to have the same number
of fleas) and the number of free infectious fleas F that
are searching for a new host
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The net reproduction rate of the fleas is given by rF with
a carrying capacity of KF, while the death rate is dF.

The human population dynamics do not affect the
number of new human cases since a subsequent
transmission between humans is rare (Gage & Kosoy
2005). The potential for human cases is directly related
to the number of infected fleas that fail to find a rat host
and instead choose a human host

F I ZF exp ðKaTRÞ: ð1:3Þ

The first quantity of interest,F I (labelled lH in Keeling &
Gilligan 2000), represents the upper bound or the
potential force of infection to humans.
J. R. Soc. Interface (2008)
Keeling & Gilligan used a stochastic model derived
from (1.1) and (1.2) to explain how plague can lay
dormant but then break out into an epidemic in the
human population. Their explanation depends on
consideration of plots of F I versus F and TR as well
as plots of F I and IR/mR versus time. These show that
their model predicts that the highest potential for a
human epidemic occurs after a major epizootic in the
rat population, which leaves a large number of infected
fleas looking for a host. This is discussed in terms of
the reproductive ratio of the disease, R0ZðbRKF=dFÞ
ð1KexpðKaKRÞÞ.
1.2. Four assertions

Keeling & Gilligan made assertions about the
behaviour of the model (1.1) and (1.2) over a large
region in the parameter space centred at specific
reference values (table 1).

Our analysis addresses four assertions that depend
on claims about the sensitivity of the model with
respect to the parameters. As a measure of sensitivity of
an output variable V with respect to a parameter l,
Keeling & Gilligan used SZm=V ðmÞ!vV=vl, where m
is the reference value. The four assertions are as follows.

(i) From multiple simulations, we note that, even
when parameters are changed by a factor of 2,
the essential pattern of sensitivity . remains,
showing that SZðm=V ðmÞÞðvV=vlÞ is a robust
measure of the effects of parameter change.

(ii) Only KF, the carrying capacity of fleas per rat,
has any effect (on F I and IR/mR) that is much
stronger than linear, although rR, 1Kp, KR, and
a all have effects on the number of rat or human
cases that are close to linear.

(iii) . it is sufficient to consider whether results are
robust to changes in the parameter a.

(iv) The basic reproductive ratio of the disease,R0, is
related to the parameters via aKR in the following
way: R0ZðbRKF=dFÞð1Kexp ðKaKRÞÞ. From
standard theory, rat epizootics can occur when
R0O1, which corresponds to aKRO0.39. It can
also be seen that a large human outbreak is
possible when 0.5!aKR!20.

These claims depend on the underlying fact that the
linearization of the model with respect to the para-
meters at the reference values describes the behaviour
of the model over a large region in the parameter space.
We point out that there is no a priori reason to believe
that Taylor’s theorem can be used in this way.
1.3. A quick overview of sensitivity analysis

Describing response to variations in model input, e.g.
initial and boundary data and parameters, is key to
understanding a mathematical model of a complex
system. Inputs into a model are subject to many sources
of uncertainty, variability and measurement error. The
model itself may be subject to uncertainty arising
from incomplete information or poor understanding of
the physical processes and driving forces. Sensitivity

http://rsif.royalsocietypublishing.org/
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analysis is the organized study of the way in which the
output of a model responds to different sources and
kinds of variations in the input into the model and in
the model itself.

We consider the problem of computing a quantity
of interest

qðxðlÞÞZ qðlÞZ
ðT
0
hxðs; lÞ;jðsÞi ds; ð1:4Þ

where j is a function of time corresponding to the
desired information and x2R

n solves the initial
value problem

_xðt; lÞZ f ðxðt; lÞ; l1Þ; tO0;

xð0; lÞZ l0:

(
ð1:5Þ

Here, f : RnCp/R
n is the model and lZðl1; l0Þu2R

d

(dZpCn) are the parameters, with l1 2R
p represen-

ting model parameters and l0 2R
n the initial con-

ditions. The quantity of interest could be a statistical
quantity, values of the solution at a given time or a
more complicated function determined from the
solution values.

Two fundamental tools for sensitivity analysis are
density estimation and computing partial derivatives
with respect to the parameters. Density estimation is
concerned with computing the probability distribution
associated with the quantity of interest q(x(l)) com-
puted from a solution of a model, where the model
inputs, e.g. parameters l, are assumed to be random
variables with associated distributions. Density esti-
mation describes how the model output varies as the
parameters vary over the entire parameter space.
Parametric density estimation is concerned with the
case in which the output distribution is known, in which
case the goal is to determine best values for the
parameters defining the distribution. Non-parametric
density estimation is used when the output distribution
is unknown or not recognizable, as often happens, e.g.
for nonlinear models. In this case, random samples are
drawn from the parameter space, the model is solved
and the quantity of interest is computed for each
sample; finally, a histogram is computed from the values
to form an approximate distribution. Various smooth-
ing techniques are often used to reduce the effects of the
discrete binning associated with a histogram.

There are two classic approaches to computing
partial derivatives of model output with respect to
parameters in the model. In forward linearization
analysis (Caswell 2007), equations for the partial
derivatives of the solution of a model with respect to
parameters are determined by differentiating the model
and using the Chain Rule

v

vt

vx

vl1

� �
ZDxf ðxðtÞ; l1Þ

vx

vl1
CDl1

f ðxðtÞ; l1Þ;

where vx=vl1 is the gradient of x with respect to
parameter l1, and Dx f and Dl1

f are the Jacobians of f
with respect to x and l1, respectively. The resulting
(large) system of equations for the solution and its
partial derivatives is integrated.

The second classic approach uses the mathematical
notions of duality and adjoint operators (Lanczos 1996;
Marchuk et al. 1996; Estep & Newton in preparation).
J. R. Soc. Interface (2008)
This approach is not as easy to describe as forward
linearization analysis. The most familiar example is
provided by the technique of Green’s functions in
differential equations (Lanczos 1996). In the adjoint-
based approach, a specific adjoint problem

K _fðtÞKDxf ðxðtÞ; l1ÞufðtÞZjðtÞ; TR tR0;

fðTÞZ 0

(

ð1:6Þ

is defined for each quantity of interest q(l) to be
computed from the model solution. This adjoint
problem yields partial derivatives of the quantity of
interest with respect to model parameters relatively
cheaply (see appendix A).

Asymptotically, values computed from the two
approaches are equal. There are circumstances under
which each approach is preferred. The forward linear-
ization technique yields values of partial derivatives of
the solution at all points in time. From this, one can
compute partial derivatives of particular quantities of
interest using the Chain Rule. On the other hand, the
augmented system is very large and expensive to solve.
If the values of the partial derivatives at all points in
time are not required, then much of the computational
work is wasted. In case that only partial derivatives of
particular quantities of interest are desired, the adjoint-
based technique is computationally more efficient.

In a recent work, Estep and co-workers have
developed new computational tools for sensitivity
analysis using the adjoint equation. This work uses
the fact that partial derivatives of a quantity of interest
with respect to parameters are computed relatively
cheaply by solving the adjoint equation. In Estep &
Neckels (2006, 2007), efficient numerical methods for
density estimation have been developed. The derivative
information provided by the adjoint equation is used to
either create a higher order approximation or derive
adaptive sampling. This adaptive sampling is not
probability based. In appendix A, we describe this
work briefly.

The computations in this paper were performed with
an earlier version of globally accurate adaptive
sampling package (GAASP; Estep et al. 2006).
GAASP provides computational tools for solving
ordinary differential equations with quantitative esti-
mates of numerical accuracy and tools for analysing the
parameter and data sensitivity of differential equation
models.
2. ANALYSIS OF THE MODEL

We use adjoint-based sensitivity analysis and the new
computational tools described in appendix A to analyse
Keeling & Gilligan’s model in several ways.

—We find a (relatively small) region in the parameter
space over which the linearization at the reference
value provides a reasonably accurate description of
the behaviour of the model.

—We construct a piecewise constant approximation of
the quantity of interest over a large region in the
parameter space that is close in size to the region

http://rsif.royalsocietypublishing.org/
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Figure 1. Plots F I (solid line) and IR/mR (dashed line) versus time, where F I is the force of infection to humans and IR/mR is the
ratio of the number of infected rats relative to the rate of recovery. (a) Reference parameter values with aZ0.004 (a is the search
area of fleas). (b) Values on the ‘upper’ boundary of RL with aZ0.006 and pZ1.0 ( p is the probability that rats inherit
resistance). (c) Values in one corner ofRS with aZ0.004125. Note that the behaviour at this point matches that at the reference
value shown in the plot on the left very closely.
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Figure 2. Output distributions of vF I=vli, iZ4, 5, 6, 7, for a uniform input distribution on RL. Variance: (a) 209, (b) 3285,
(c) 0.19268 and (d ) 48 908.
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over which Keeling & Gilligan wanted to draw
conclusions about the model behaviour.

—We implement a method of steepest ascent and
descent to find the local maxima and minima in a
large region in the parameter space.

We then draw several conclusions about the model
sensitivity and examine the validity of assertions
(i)–(iv).

We make some initial observations. First, Keeling &
Gilligan stated that their conclusions hold for par-
ameter values that vary by as much as a factor of 2.
This is imprecise since several parameters have
physical limitations. Instead, we consider a large
rectangleRL with sides ½mi=2; 3mi=2� for each i (if either
endpoint goes past a physical bound, we use the
physical bound instead). Even a region of that size
allows a wide range of behaviours (figure 1). Second, F I

depends on the final time T. Keeling & Gilligan used
TZ100. However, (1.1) and (1.2) are used to construct
a stochastic model that, Keeling & Gilligan noted, has a
different long-time behaviour. Indeed, it is the transient
behaviour of (1.1) and (1.2) which is relevant to
the stochastic model. Therefore, we use a smaller
time, TZ10. This affects the conclusions quantitatively
but not qualitatively.
2.1. Linearization at the reference value

Sampling F I over the large rectangle RL shows that
the linearization at the reference point m does not
describe the behaviour of the model over RL. For
J. R. Soc. Interface (2008)
example, if we use a uniform distribution on RL, the
partial derivatives vF I=vli have approximately
normal distributions centred at 0 for iZ4, 5, 6, 7
but have variances 210, 3300, 0.19, 49 000, respect-
ively (figure 2). This reflects the fact that, when we
sample over the entire region RL, varying more than
one parameter at a time results in a more complicated
behaviour than that observed when varying each
parameter individually and that F I depends non-
linearly on some parameters. We provide evidence in
figure 3. In addition, it demonstrates that there are
enormous scale differences in the responses to the
various parameters.

Since the quantity of interest depends smoothly on
the parameters, Taylor’s theorem shows that lineariza-
tion at the reference value provides a good approxi-
mation on all sufficiently small rectangles centred at the
reference value. The goal is to try to determine the
largest possible rectangle on which linearization pro-
duces a reasonable approximation. To find such a
region, we successively refineRL one-parameter dimen-
sion at a time until we find a smaller rectangle,RS, over
which linearization appears to be valid.

One way to do this would be to assume a uniform
distribution on the parameters, then, holding all
parameters fixed but one, compute a least-squares
linear approximation to the observed values of the
output as that one parameter varies and then checking
goodness of fit using the R2-statistic. We can decrease
the size of the rectangle in that parameter dimension
until we achieve a reasonable fit.

http://rsif.royalsocietypublishing.org/
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However, this approach does not provide a way to
deal with scale differences in the parameters. We wish
not only to determine a relatively large region on which
linearization is valid but also to determine a region over
which the relative variation in parameters is roughly the
same. Our criteria for deciding whether linearization is
valid are based on the observation that a one-dimen-
sional linear transformation maps a normal input
distribution to another normal distribution. We fix all
the parameters at the reference values except one and
place a normal distribution on the one parameter that is
allowed to vary. The normal distribution is centred at
the reference value and the variance is computed so that
the range for the parameter in the current rectangle
represents a 95% CI. The normal is then truncated to
the current rectangle.We then compute the correspond-
ing output distribution of F I using a kernel density
estimator based on (A 5). If the output distribution is
not approximately normal (which can be checked
crudely using a least-squares line fit and R2 statistic
after changing variables), we refine the rectangle by
halving the size in the dimension of the parameter in
question, and try again. Once we determine a range of
valid linearization for a parameter, we proceed to the
next parameter. After working through all the par-
ameters, we obtain a smaller rectangle, RS.

WhileRS is a region on which the linearization of F I

provides an accurate approximation, the variances of
the distributions of F I corresponding to the distri-
butions on the different parameters on RS still vary
over a very large range. We refineRS further in order to
reduce the variances corresponding to the different
parameters to all having relative size 1, where we scale
each output distribution corresponding to each par-
ameter by the size of the reference value for that
parameter. We stop after 16 iterations to obtain RS

with side lengths ½31mi=32; 33mi=32�. Further refine-
ment did not lower the variances for l2 and l8.
However, sampling on RS suggests that the time
behaviour of F I and IR/mR is relatively constant over
RS (figure 1). On the other hand, if we increase
the dimensions of RS by 50% in each dimension, this
is no longer true.
J. R. Soc. Interface (2008)
2.2. Adaptive sampling and dimension reduction

Recall that, in the adaptive sampling algorithm, we add
points in the parameter direction in which the partial
derivative of F I is the largest. As the sampling
proceeds, the number of sample points added in each
parameter direction indicates the sensitivity of F I with
respect to the parameters. In figure 4, we plot the value
of the parameters at the centre of each division in fast
adaptive parameter sampling (FAPS) against the
number of samples used to create the piecewise
constant approximation at each iteration. This shows
that F I is highly sensitive to l1, l3, l5, l10 and l11 and
not very sensitive to l2, l4, l6, l7, l8 and l9 on RL. We
emphasize that the same conclusion can be made from a
FAPS computation with just 50 sample points.

If F(x, u) is a target distribution and F̂ nðxÞ is an
approximation to F(x) computed using n samples, the
standard Kolmogorov–Smirnov (K–S) statistic

DnðuÞZ sup
x

jF̂ nðx;uÞKFðx;uÞj

is used to check the accuracy. In figure 5, we plot the
K–S statistic for FAPS versus the number of sample
points. By way of comparison, we plot the K–S statistic
for the error of the mean of many densities determined
by computing histograms of the Monte Carlo samples
drawn from uniform random sampling of the parameter
space along with the asymptotic upper bound given by
the law of the iterated logarithm (Estep & Neckels
2006). Note that the error of a single Monte Carlo
density has a much larger variance than that of the
average of many Monte Carlo computations, as can be
seen in the plot.

For a small number of sample points, FAPS
converges at the same rate as the average of a number
of Monte Carlo computations as well as the theoretical
bound. Restricting the addition of sample points to the
directions with the largest derivatives leads to the
staircase appearance of the plots and the levelling out of
the statistic for moderate sample sizes.

In figure 5, we also plot the K–S statistic for FAPS
when l2, l4, l6, l7, l8 and l9 are held fixed at the
reference value. This confirms the observation from

http://rsif.royalsocietypublishing.org/
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figure 4 that F I is sensitive to the parameters l1, l3, l5,
l10 and l11, and we can safely reduce the dimension
of the model by considering variations in these
parameters alone.
2.3. Searching for extreme values
in parameter space

As part of predicting human epidemics, Keeling &
Gilligan examined R0 at extremal values of a and KR

while fixing the other parameters at the reference values.
There is a very narrow window, 0:39!aKR!0:5, for
which plague can affect the rat population significantly
without causing a human epidemic. Their approach is
reasonable if the model is insensitive to parameter
changes as they claim, given that vR0=vaZvR0=vl8 is
very large at the reference value. However, we have
J. R. Soc. Interface (2008)
seen that the model is sensitive to five parameters and
also to simultaneous parameter changes.

Alternatively, we search for local maxima and
minima in the parameter domain using a gradient
search algorithm. Starting at a point, we can take a
small step in the direction of the gradient (or minus the
gradient) and recompute new values before stepping
again. In this way, we create a path of linked sample
points along which we eventually find either an
extremal value where the gradient is zero or a point
where the path leaves the parameter domain. The final
stopping point depends on the initial point as, in
general, we expect to find many local extrema.

We use this in two ways. First, we start at the
reference value and conduct searches on both RS and
on a larger rectangle ~RL with side lengths ½mi=2; 2mi�.
Keeling & Gilligan’s claimed amounts to stating that
any search starting from the reference value for the
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parameters should leave ~RL along the l8Za axis.
Leaving the reference value, the first few steps of the
gradient search are roughly parallel to the l8Za axis, as
vR0=va is the dominant component in the gradient of
R0 near the reference value. If vR0=va remains the
dominant component in the gradient of R0 at all points,
then the gradient search will always move roughly
parallel to the l8Za axis. If, however, R0 becomes more
sensitive to changes in other parameters away from the
reference value, the gradient search will change
direction.

Second, we choose five points near the reference
value and follow those paths to see if they stay close to
the reference trajectory.

On RS, the searches starting from all six initial
points exit the rectangle on the face perpendicular to
the l8 axis. However, the exit points vary greatly over
this face because variations in the other parameters
have an important effect. This affects the gradient
searches as they move in the directions that are not
roughly parallel to the l8 axis. Therefore, Keeling &
Gilligan’s claim is partially correct onRS. On the larger
rectangle ~RL, the searches starting at the reference
value leave the larger rectangle ~RL on the lower face
perpendicular to l7 and the upper face perpendicular to
l2. In other words, the gradient search does not follow
the l8 axis as derivatives with respect to other
parameters come to dominate the gradient. The
searches that begin from the five other starting points
all reach different local minima inside ~RL. On the other
hand, all of the searches corresponding to following the
negative gradient leave on the face perpendicular to l2,
though at six different points.
3. CONCLUSIONS

We begin by addressing Keeling & Gilligan’s assertions
(i)–(iv).

(i) Regarding assertion (i), the linearization at the
reference values simply does not represent the
behaviour of the nonlinear model over the large
rectangleRL. In particular, there is an enormous
variance in the sensitivity on RL; simul-
taneously varying multiple parameters on RL

leads to unpredictable results and there are some
definite nonlinear dependencies. The lineariza-
tion at the reference values does accurately
represent the behaviour of the model over a
much smaller rectangle RS.

(ii) Regarding assertion (ii), we find that the
quantity of interest F I is most sensitive to
variations in the parameters l1ZrR, l3ZKR,
l5ZbR, l10ZdF and l11ZKF in contrast to the
findings of Keeling & Gilligan, which predict the
most sensitive dependence on l1ZrR, l2Zp,
l3ZKR, l8Za and l11ZKF. That the model is
sensitive to three parameters (l1ZrR, l3ZKR

and l11ZKF) under both analyses is no surprise,
as these directly control growth rates and sizes of
the rat and flea populations, and thus have the
greatest potential for altering disease dynamics.
It is also not surprising that FAPS found
J. R. Soc. Interface (2008)
sensitivity to l5ZbR, the transmission rate
from fleas to rats, and l10ZdF, the death rate
of fleas. Both of these parameters influence the
number of infected fleas and thus F I. A recent
model of bubonic plague dynamics by Webb
et al. (2006) is also found to be sensitive to
transmission rates and infectious periods.

(iii) Regarding assertion (iii), we cannot predict the
behaviour of the model, even on the smallest
rectangleRS, by fixing all the parameters except
for a at the reference values and considering the
effect of varying a. Moreover, there is no
apparent correlation between the direction of
the gradient at the reference point and nearby
points and the location of extremal values along
paths given by the method of steepest ascent and
descent. We conclude that the model is sensitive
to a number of parameters in addition to a, and
that in some regions of the parameter space it is
more sensitive to parameters other than a.

(iv) Regarding assertion (iv), when predicting the
behaviour of the model for the values of aKR, we
have to consider the range for the other
parameter values. Thus, predicting plague out-
breaks in rats that could spill over into human
populations depends upon more parameters
than just a, the search area by fleas and KR,
the carrying capacity for the rat population
(Gage & Kosoy 2005).

As a practical consequence of our analysis of the
Keeling & Gilligan model, we conclude that the general
danger of large-scale outbreaks of plague in humans
predicted by the model was overstated. The reason is
that the force of infection from rats and their fleas to
humans, F I, depends strongly on more parameters than
just the rat carrying capacity, KR, and searching
efficiency of fleas, a. In particular, Keeling & Gilligan
concluded that the reproductive ratio of disease, R0, is
predicted to be greater than 1 for even fairly low
carrying capacities of rat populations provided the
searching efficiency of fleas a is high. On the other hand,
our analysis shows that, in large parts of the parameter
space, the model is relatively insensitive to a and that
R0>1 and human risk depends more on large rat
populations than on flea behaviour. Large populations
of rodents still provide the risk of human outbreaks, but
details of epidemiology within the rat and flea plague
reservoir, especially flea survival and transmission
rates, must also be specified (see Gage & Kosoy 2005).

We emphasize that our observations do not necess-
arily contradict the scientific conclusions of Keeling &
Gilligan (2000) because their main results are based
on a stochastic model, not (1.1) and (1.2). However, our
results do raise questions about the connection between
the stochastic model analysed by Keeling & Gilligan
and the underlying deterministic model that was used
to create the stochastic model. The properties of the
stochastic anddeterministicmodels are clearly different.

Our analysis emphasizes the fact that nonlinear
models like (1.1) and (1.2), even when composed of
well-understood mechanisms, can exhibit complicated
nonlinear sensitivity to parameters that are not

http://rsif.royalsocietypublishing.org/


1106 Sensitivity properties of bubonic plague M. Buzby et al.

 rsif.royalsocietypublishing.orgDownloaded from 
predictable from linearization at a single point in the
parameter space. Keeling & Gilligan’s assertions about
the model are accurate on a relatively small region in
the parameter space surrounding the reference value,
but do not hold true in a larger region in the parameter
space. Whether this is relevant or not depends on the
region in the parameter space on which predictions are
needed and how the model results are used. However, in
any situation, it is scientifically important to determine
the limitations affecting the accuracy of predictions of
model behaviour.

When analysing the sensitivity of a model with
respect to parameters, the ability to compute gradient
information at sample points is invaluable. In this
paper, we have used adjoint-based analysis tools to
carry out a detailed sensitivity analysis of a nonlinear
model of the plague over a large parameter domain. We
have also demonstrated that the FAPS and high order
parameter sampling numerical methods based on the
adjoint problem, variational analysis and the general-
ized Green’s function provide a very efficient way to
perform non-parametric density estimation.
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APPENDIX A. THE ANALYTIC TECHNIQUE

To analyse parameter sensitivity, we employ an
approach (Eriksson et al. 1995, 1996; Estep 1995;
Estep et al. 2000; Estep & Neckels 2006, 2007) that uses
variational analysis involving the generalized Green’s
function, which solves the (linearized) adjoint problem
(1.6) with data specific to the information (1.4) to be
computed. Green’s function describes how local vari-
ation in the model, parameters and data propagate into
the computed information. The ability to tailor the
analysis to a specific quantity of interest, such as F I

(1.3), is very important, e.g. the solution of (1.1) and
(1.2) is much more sensitive to changes in parameter
values than F I.

We give minimal details about the new approach
(see Estep & Neckels (2006, 2007) for information). To
model uncertainty and variation in the parameters, we
assume that lZl(u) is a random vector on a
probability space (U, B, P). This leads naturally to
the density estimation problem for qðuÞZqðlðuÞÞ, i.e.
approximate the cumulative distribution function Fq(x)
of q given an arbitrary input distribution for l(u).
Using the cumulative distribution function, we can
J. R. Soc. Interface (2008)
compute the density as well as any desired statistic, e.g.
means and moments.

As a first step, we solve for the deterministic solution
y(t) corresponding to a reference value mZðm1;m0Þu
for the parameters and compute the generalized
Green’s function solving the adjoint problem to the
linearized equation

K _fðtÞKDxf ðyðtÞ;m1ÞuðtÞfðtÞZjðtÞ; TR tR0;

fðTÞZ 0:

(
ðA 1Þ

A modification (Estep & Neckels 2006, 2007) of the
standard variational argument for Green’s functions
yields the following.

Theorem A.1. If f is smooth, then

qðlÞz
ðT
0
hy;ji dsChl0Km0;fð0Þi

C

ðT
0
hDl1

f ðy;m1Þðl1Km1Þ;fi ds; ðA 2Þ

and

VqðmÞðvÞZ hv0;fð0ÞiC
ÐT
0 hDl1

f ðy;m1Þv1;fi ds;

v Z ðv0; v1Þu2R
d :

)

ðA 3Þ

The theorem implies that derivatives of the quantity
of interest can be computed cheaply by solving a linear
adjoint problem and computing an integral. Note that
the first term on the r.h.s. of (A 3) describes the effect of
variations in the initial conditions and the second term
describes the effect of variations in the model par-
ameters.

If we use the reference sample q(m) as an approxi-
mation for the value q(l) at a nearby parameter value l,
theorem A.1 yields a computable error estimate

qðlÞKqðmÞzhVqðmÞ; ðlKmÞi: ðA 4Þ

In general, one sample point cannot be used to
accurately describe the behaviour of the quantity of
interest over a large parameter domain. Therefore, we
construct a piecewise local approximation by comput-
ing a partition of the parameter space L into N
generalized rectangles fRigNiZ1, choosing a sample
point mi inside each Ri , and computing corresponding
sample values q(mi) for iZ1, ., N. This yields the
piecewise constant approximation

~qðlÞZ
XN
iZ1

qðmiÞcRi
ðlÞ; ðA 5Þ

where cRi
is 1 on Ri and 0 elsewhere. The error is

estimated by a sum of local contributions

qðuÞK ~qðuÞz
XN
iZ1

ð
Ri

hVqðmiÞ; ðzKmiÞi dmlðzÞ: ðA 6Þ

We use (A 6) to construct an adaptive sampling
procedure called FAPS (Estep & Neckels 2006). If the
estimated error for a given piecewise approximation is
too large, we choose additional sample points in the
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rectangle with the largest local contribution by adding
sample points in the parameter dimension with the
largest directional derivative. By adding sampling
points in one dimension at a time, we avoid sampling
in parameters that are not significantly affecting the
quantity of interest.

To apply this approach for the Keeling & Gilligan
analysis, we must linearize the nonlinear quantity of
interestF I before using the representation formula. Since

vliF I Z vliF exp ðKaTÞKaF exp ðKaTÞvliT ;

for is8, it suffices to find vliF and vliT , which are
linear functionals of the solution corresponding
to data j1ZdðtKTÞð0; 0; 0; 0; 1Þu and j2ZdðtKTÞ
ð1; 1; 1; 0; 0Þu, respectively, where d(s) is the delta
function at s. For l8Za, we obtain vl8F I in a similar
fashion. To calculate these derivatives, we simul-
taneously integrate two adjoint solutions corresponding
to j1 and j2.
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